On the Explosion of the Local Times of Brownian Sheet Along Lines

نویسندگان

  • Davar Khoshnevisan
  • Pál Révész
  • Zhan Shi
چکیده

One can view a 2-parameter Brownian sheet {W (s, t); s, t ≥ 0} as a stream of interacting Brownian motions {W (s, •); s ≥ 0}. Given this viewpoint, we aim to continue the analysis of Walsh (1978) on the local times of the stream W (s, •), near time s = 0. Our main result is a kind of maximal inequality that, in particular, verifies the following conjecture of Khoshnevisan (1995a): as s → 0, the local times of W (s, •) explode almost surely. Two other applications of this maximal inequality are presented, one to a capacity estimate in classical Wiener space, and one to a uniform ratio ergodic theorem in Wiener space. The latter readily implies a quasi-sure ergodic theorem. We also present a sharp Hölder condition for the local times of the mentioned Brownian streams that refines earlier results of (Lacey 1990; Révész 1985; Walsh 1978).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Explosion of the Local Times Along Lines of Brownian Sheet Étude de l’explosion des temps locaux du drap brownien le long des droites

Abstract: One can view a 2-parameter Brownian sheet {W (s, t); s, t ≥ 0} as a stream of interacting Brownian motions {W (s, •); s ≥ 0}. Given this viewpoint, we aim to continue the analysis of [20] on the local times of the stream W (s, •) near time s = 0. Our main result is a kind of maximal inequality that, in particular, verifies the following conjecture of [10]: As s → 0, the local times of...

متن کامل

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

Effects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium

This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...

متن کامل

A modified variable physical properties model, for analyzing nanofluids flow and heat transfer over nonlinearly stretching sheet

In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are common...

متن کامل

Boundary layer Viscous Flow of Nanofluids and Heat Transfer Over a Nonlinearly Isothermal Stretching Sheet in the Presence of Heat Generation/Absorption and Slip Boundary Conditions

The steady two-dimensional flow of a viscous nanofluid of magnetohydrodynamic (MHD) flow and heattransfer characteristics for the boundary layer flow over a nonlinear stretching sheet is considered. Theflow is caused by a nonlinear stretching sheet with effects of velocity, temperature and concentrationslips. Problem formulation is developed in the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002